The new Mathieson 2015(Eight thousand years of natural selection in Europe) included dozens of new mtDNA results from Neolithic Anatolia, Copper age Spain, and Eneolithic-Bronze age Samara Russia. I added the results to my mtDNA DataBase. The results confirm trends revealed earlier by ancient mtDNA. Below are two mtDNA-related highlights from Mathieson 2015.
The mtDNA of (some of)Europe's First farmers came from Anatolia
26 mtDNA samples were taken from people who lived in farming communities at the western edge of Anatolia in circa 6300 BC. The results don't differ at all from mtDNA results of Europe's first farmers in Central Europe and Spain from 5500-5000 BC. Y DNA and autosomal DNA confirm these Neolithic Anatolians were the ancestors of Early Neolithic Central Europeans and Iberians.
It's important to note T2b, J1c, K1a, N1a1a take up the majority of Neolithic Anatolian and Early Neolithic European mtDNA. T2b and J1c today are considered European-specific and modern Europeans certainly inherited them from Neolithic Anatolia(or near by regions). The form of K1a the Neolithic Anatolians carried was all K1a4 and K1a2, except for one K1a3. All these forms of K1a have been found in Neolithic Europe and are popular in Europe today.
U3, U8b, H5, W1c'i, and X2a-o are minor lineages shared between Neolithic Anatolians and Central Europeans. None of the Neolithic Anatolians had U5 or U4 which exists at around 5% in Early Neolithic Europeans, possibly reflecting their 7% "WHG" admixture reported based on autosomal DNA by Mathieson 2015.
Not all Neolithic mtDNA from Europe is very similar to Neolithic Anatolians. mtDNA data from Neolithic Romanians is slightly differnt. They have a much high frequency of H and lack T2 and N1a1a and all their T was T1 like most T in the Balkans today.
Although Neolithic Anatolian and Central Europeans belonged to many European-specific lineages their mtDNA differed in many ways to modern European mtDNA. Whatever happened to N1a1a? Why is K1a and T2b not so popular today? Why is H so popular today? Autosomal DNA tells us Neolithic Anatolians are direct ancestors of modern Europeans, however there's lots of mystery as to why stark differences exist in mtDNA between the two.
T1a1, I, H6a, H2a1 are Steppe-lineages?
I, H6, and H2a1 don't appear in ancient European mtDNA till Steppe peoples from Ukraine and Russia migrated into Central Europe in the 3rd millennium BC. T1a existed in Neolithic Europe but was at a higher frequency in Steppe populations and first appears in Germany with Corded Ware after being absent for 2,000 years.
The new mtDNA data from Mathieson 2015 adds to the list of Ancient Steppe people who belong to T1a, I, H6a, and H2a1. Various branches of U5a, U4, and U2e are also quite obviously mostly of Steppe-decent in Europe today. Today the highest frequency of Steppe-related mtDNA is found in Volga Russia, Scandinavia, NorthEast Europe, and the Balkans. Steppe-specific subclades are also found in West Asia, Iberia, and Italy. In the Hindu Kush there's a decently high frequency of U4, U2e, and U5a which might have mostly Steppe origins.
The reason the title says T1a1 not T1a, is high coverage Steppe T1a from Mathieson 2015 is specifically T1a1. There are also several examples of T1a1 in Late Neolithic Europeans who had a lot of Steppe-ancestry. Today T1a1 takes up almost 100% of T1a in Europe and a very small percentage of West Asian T1a. It's an obvious Steppe mtDNA haplogroup.
The mtDNA of (some of)Europe's First farmers came from Anatolia
26 mtDNA samples were taken from people who lived in farming communities at the western edge of Anatolia in circa 6300 BC. The results don't differ at all from mtDNA results of Europe's first farmers in Central Europe and Spain from 5500-5000 BC. Y DNA and autosomal DNA confirm these Neolithic Anatolians were the ancestors of Early Neolithic Central Europeans and Iberians.
It's important to note T2b, J1c, K1a, N1a1a take up the majority of Neolithic Anatolian and Early Neolithic European mtDNA. T2b and J1c today are considered European-specific and modern Europeans certainly inherited them from Neolithic Anatolia(or near by regions). The form of K1a the Neolithic Anatolians carried was all K1a4 and K1a2, except for one K1a3. All these forms of K1a have been found in Neolithic Europe and are popular in Europe today.
U3, U8b, H5, W1c'i, and X2a-o are minor lineages shared between Neolithic Anatolians and Central Europeans. None of the Neolithic Anatolians had U5 or U4 which exists at around 5% in Early Neolithic Europeans, possibly reflecting their 7% "WHG" admixture reported based on autosomal DNA by Mathieson 2015.
Not all Neolithic mtDNA from Europe is very similar to Neolithic Anatolians. mtDNA data from Neolithic Romanians is slightly differnt. They have a much high frequency of H and lack T2 and N1a1a and all their T was T1 like most T in the Balkans today.
Although Neolithic Anatolian and Central Europeans belonged to many European-specific lineages their mtDNA differed in many ways to modern European mtDNA. Whatever happened to N1a1a? Why is K1a and T2b not so popular today? Why is H so popular today? Autosomal DNA tells us Neolithic Anatolians are direct ancestors of modern Europeans, however there's lots of mystery as to why stark differences exist in mtDNA between the two.
T1a1, I, H6a, H2a1 are Steppe-lineages?
I, H6, and H2a1 don't appear in ancient European mtDNA till Steppe peoples from Ukraine and Russia migrated into Central Europe in the 3rd millennium BC. T1a existed in Neolithic Europe but was at a higher frequency in Steppe populations and first appears in Germany with Corded Ware after being absent for 2,000 years.
The new mtDNA data from Mathieson 2015 adds to the list of Ancient Steppe people who belong to T1a, I, H6a, and H2a1. Various branches of U5a, U4, and U2e are also quite obviously mostly of Steppe-decent in Europe today. Today the highest frequency of Steppe-related mtDNA is found in Volga Russia, Scandinavia, NorthEast Europe, and the Balkans. Steppe-specific subclades are also found in West Asia, Iberia, and Italy. In the Hindu Kush there's a decently high frequency of U4, U2e, and U5a which might have mostly Steppe origins.
The reason the title says T1a1 not T1a, is high coverage Steppe T1a from Mathieson 2015 is specifically T1a1. There are also several examples of T1a1 in Late Neolithic Europeans who had a lot of Steppe-ancestry. Today T1a1 takes up almost 100% of T1a in Europe and a very small percentage of West Asian T1a. It's an obvious Steppe mtDNA haplogroup.
Nice one.
ReplyDeleteThanks Krefter, very interesting. There is not enough out there about mtDNA - and most of it is so low resolution as to be useless.
ReplyDeleteInteresting, I love to see more on mtdna. Thank you! Now if I could just track down H3c1's location...
ReplyDeleteIm H3c1. can't find info.
DeleteYes, Kim. More studies on mtDNA are badly needed.
ReplyDeleteI most certainly agree. I have absolutely no info (and have never met anyone) of my haplogroup subclade H84.
ReplyDeleteWhere is the origin of H1b1a? Thank you, if anyone knows the geographic area.
ReplyDeleteSpeaking of "H", does anyone know more about H1m these days? I've had my results since 2009, and this designation has had very little said, and remains somewhat mysterious to the relatively few of us. Might add I'm not getting any younger!
ReplyDeleteThank you! Appreciate the research on mtDNA H6a! Now, to try to understand how my ancient Grandmothers got from the Steppe to the Balkans! Was it with an early Yamnaya or Catacomb migration OR was it a migration South of Corded Ware folks OR was it a migration of Scythians or Sarmatians.jv
ReplyDeleteI was diagnosed as HEPATITIS B carrier in 2013 with fibrosis of the
ReplyDeleteliver already present. I started on antiviral medications which
reduced the viral load initially. After a couple of years the virus
became resistant. I started on HEPATITIS B Herbal treatment from
ULTIMATE LIFE CLINIC (www.ultimatelifeclinic.com) in March, 2020. Their
treatment totally reversed the virus. I did another blood test after
the 6 months long treatment and tested negative to the virus. Amazing
treatment! This treatment is a breakthrough for all HBV carriers.